MouseWarrior24 Wheel II, MouseWarrior24 Eyelll Universal mouse controller chips

1. Features

- USB, and PS/2 interfaces
- Auto detects active interface
- Up to six buttons via USB, 5 buttons via PS/2
- Full USB V1.1/2.0 compliance
- Full USB HID 1.1 compliance
- Uses optical quadrature encoder (MouseWarrior24 Wheel II), or optical motion sensor ADNS2051 (MouseWarrior24 EyeIII)
- Supports quadrature encoder wheel or two buttons for scrolling
- Compatible with standard system drivers, no special drivers necessary
- Low external component count
- Single +5V power supply
- Available in DIL24 or SOIC24

1.1 Variants

MouseWarrior is available in a number of variants.

MouseWarrior24 Wheel II

- USB and PS/2 interfaces
- Supports up to six buttons
- Uses any quadrature encoding hardware
- Scrolling by quadrature encoded wheel or two buttons

MouseWarrior24 EyeIII

- USB and PS/2 interfaces
- Supports up to six buttons
- Uses Agilent ADNS2051 optical motion sensor to track movement with no moving parts.
- Scrolling by quadrature encoded wheel or two buttons

MouseWarrior24J8

- USB interface
- Mouse/Joystick hybrid function
- For use with 100 k Ω joystick

See separate data sheet

MouseWarrior24H8

- USB interface
- Mouse/Joystick hybrid function
- Analog input with 8 bit resolution

See separate data sheet

Custom variants

Custom adaptions are available on request.

2. Functional overview

The MouseWarrior family supports multiple pointing technologies. Using MouseWarrior to build a pointing device simplifies the design significantly. No special drivers are required, MouseWarrior controllers work with the standard mouse drivers of all common operating systems

2.1 Product selection matrix

Туре	Sensor type	Buttons	Wheel	USB	PS/2	DIL24	SOIC24	Module
MouseWarrior24Wheel II	Quadrature	6						-
MouseWarrior24Eye III	ADNS2051	6		\checkmark	\checkmark			-
MouseWarrior24J8	resistive joystick	6	3rd axis	\checkmark	-			
MouseWarrior24H8	8 bit analog	6	3rd axis		-		\checkmark	

Code Mercenaries

MouseWarrior

4. Pin Descriptions MouseWarrior24 Wheel II					
Name	I/O	Туре	Pins	Description	
D+, D-	I/O	special	15,16	USB differential data lines	
PS2Clock	I/O	OD, internal Pull Up	19	PS/2 interface clock line	
PS2Data	I/O	OD, internal Pull Up	6	PS/2 interface data line	
X1	Ι	input, internal Pull Up	1	Encoder X1 input	
X2	Ι	input, internal Pull Up	2	Encoder X2 input	
Y1	Ι	input, internal Pull Up	3	Encoder Y1 input	
Y2	Ι	input, internal Pull Up	4	Encoder Y2 input	
Z1/Down	Ι	input, internal Pull Up	8	Encoder Z1 input for wheel or scroll down button	
Z2/Up	Ι	input, internal Pull Up	17	Encoder Z2 input for wheel or scroll up button	
Left	Ι	input, internal Pull Up	24	Input for left mouse button	
Right	Ι	input, internal Pull Up	23	Input for right mouse button	
Center	Ι	input, internal Pull Up	22	Input for center mouse button	
4th	Ι	input, internal Pull Up	21	Input for 4th mouse button	
5th	Ι	input, internal Pull Up	5	Input for 5th mouse button	
6th	Ι	input, internal Pull Up	20	Input for 6th mouse button	
/Buttons	Ι	input, internal Pull Up	18	Selects wheel or buttons for scrolling	
/En	0	open drain	7	Output to drive the encoder LEDs	
VREG	0	sepcial *	11	Supplies power for USB D- pull up resistor	
PullToGND	Ι		10	Used during manufacturing, connect to GND	
PullOff	Ι	input, internal Pull Down	12	Deactivatex pull up resistors on X1, X2, Y1, Y2, Z1, Z2	
GND		Power supply	9	Ground	
Vcc		Power supply	14	Supply voltage	
NC		unused	13	Unused, leave open	

* See application circuit for external circuitry.

Code Mercenaries

MouseWarrior

4.1 Pin Descriptions MouseWarrior24 EyeIII					
Name	I/O	Туре	Pins	Description	
D+, D-	I/O	special	15,16	USB differential data lines	
PS2Clock	I/O	OD, internal Pull Up	19	PS/2 interface clock line	
PS2Data	I/O	OD, internal Pull Up	6	PS/2 interface data line	
PD	0	OD, internal Pull Up	1	PowerDown signal to the ADNS2051 sensor	
SDIO	I/O	OD, internal Pull Up	2	Serial data to/from ADNS2051	
SCLK	0	OD, internal Pull Up	3	Serial clock to ADNS2051	
Z1/Down	Ι	input, internal Pull Up	8	Encoder Z1 input for wheel or scroll down button	
Z2/Up	Ι	input, internal Pull Up	17	Encoder Z2 input for wheel or scroll up button	
Left	Ι	input, internal Pull Up	24	Input for left mouse button	
Right	Ι	input, internal Pull Up	23	Input for right mouse button	
Center	Ι	input, internal Pull Up	22	Input for center mouse button	
4th	Ι	input, internal Pull Up	21	Input for 4th mouse button	
5th	Ι	input, internal Pull Up	5	Input for 5th mouse button	
6th	Ι	input, internal Pull Up	20	Input for 6th mouse button	
/Buttons	Ι	input, internal Pull Up	18	Selects wheel or buttons for scrolling	
/En	0	OD, internal Pull Up*	7	Output to supply wheel encoder LED	
VREG	0	special *	11	Supplies power for USB D- pull up resistor	
PullToGND	Ι		10	Used during manufacturing, connect to GND	
PullOff	Ι	input, internal Pull	12	Deactivatex pull up resistors on X1, X2, Y1, Y2,	
		Down		Z1, Z2	
GND		Power supply	9	Ground	
Vcc		Power supply	14	Supply voltage	
NC		unused	4,13	Unused, leave open	

* See application circuit for external circuitry.

4.2 Pin descriptions

D+, D-

Differential data lines of USB. Connect these signals direct to a USB cable or a type B connector.

PS2Clk, PS2Data

These two lines are the PS/2 mouse interface. Connect these lines to the mouse interface of the host computer.

These two pins must be left floating if PS/2 is not used.

Internal pull up resistors.

PD, SDIO, SCLK (MouseWarrior24 EyeIII)

These signals connect direct to the corresponding pins on the ADNS2051 sensor. Internal pull up resistors.

Z1/Down, Z2/Up

Inputs for quadrature encoded scroll wheel or scroll buttons. The function of these pins is selected by /Buttons pin.

Z1 falling edge leads Z2 falling edge for upward scrolling.

Internal pull up resistors, photo transistors or buttons must pull to ground. Pull up resistors can be disabled via PullOff pin.

/Buttons

This pin is left unconnected when a scroll wheel is used. To use buttons for scrolling pull this pin to ground and connect the scroll buttons to the Z1/ Down, Z2/Up pins.

Internal pull up resistor.

/En

Enable signal for the LEDs of the optical quadrature encoder. Open drain output, capable of sinking up to 50mA.

External series resistor may be needed.

Left, Right, Center

Inputs for three mouse buttons. Internal pull up resistors, contacts must close to GND.

4th, 5th, 6th

Input for 4th, 5th, and 6th mouse button. Internal pull up resistor, contact must close to GND.

/Pull to GND

This pin is used during production of the MouseWarrior chips, connect to GND.

PullOff (MouseWarrior24)

The status of this pin at power up determines if the internal pull up resistors on the inputs X1, X2, Y1, Y2 (MW24Wheel II only) and Z1, Z2 are enabled. Pulling this pin high at power up does disable the internal pull up resistors.

VREG

Supplies 3.3V for the USB D- pull up resistor. Don't use this pin to supply power to external circuitry, it does only supply sufficient current for the pull up resistor.

GND

Power supply ground.

Vcc Supply voltage.

5. Device Operation

MouseWarrior does work with very few external components. No jumpers or circuit changes are necessary to use MouseWarrior with either of the interfaces.

MouseWarrior monitors the interface lines to detect which of the interfaces is active. Only one of the interfaces may be connected at any given time, connecting two or more interfaces at the same time will produce unpredictable results.

Once MouseWarrior has been powered up and has detected its active interface it does start checking the mouse sensor and buttons.

5.1 Power Up

Every time the supply voltage is applied MouseWarrior executes an internal reset sequence. All internal pull up resistors are disabled upon power up and will be activated during the internal reset sequence.

After initialisation MouseWarrior waits for any of the interfaces to show activity. If no interface goes active within 5 seconds of power on MouseWarrior will assume it has been hot plugged to a PS/2 port and start working as a PS/2 mouse.

5.2 Protocol details: USB

MouseWarrior works as a HID compliant pointing device using boot protocol. The country code is 0 for not localized hardware. MouseWarrior defines six buttons and a scroll wheel.

5.3 Protocol Details: PS/2

MouseWarrior by default identifies as a PS/2 device type 0. It does report the buttons Left, Right and Center via the standard protocol which is compatible with normal system drivers (i.e. Logitech method).

MouseWarrior is also compatible with the Microsoft Intellimouse ExplorerTM protocol on the PS/2 interface. They can be set to work as type 3 devices reporting the scroll wheel and three buttons or to type 4 reporting the 4th and 5th button as well. There is no way to utilze the 6th button via PS/2.

6. Absolute Maximum Ratings

65°C to +150°C
$-0^{\circ}C$ to $+70^{\circ}C$
0.5V to +7V
0.5V to Vcc+0.5V
300mW
>2000V
>200mA

6.1 DC Characteristics

	Parameter	Min	Max	Units	Remarks
V _{cc}	Operating Voltage	4.35	5.25	V	
I _{cc}	Operating Supply Current		20	mA	
I _{sb}	Suspend mode current		25	μA	Oscillator off
I _{ol}	Sink current on interface pins		2	mA	Vout = 0.4V
Iolen	Sink current on /En pin		50	mA	Vout = 0.8V
R _{up}	Pull-up Resistance	8	24	kΩ	
Vith	Input Threshold Voltage	40%	60%	Vcc	
	USB Interface				
Voh	Static output high	2.8	3.6	V	$15k\Omega \pm 5\%$ to GND
Vol	Static output low		0.3	V	
V _{di}	Differential Input sensitivity	0.2		V	l(D+)-(D-)l
V _{cm}	Differential Input common Mode Range	0.8	2.5	V	
V _{se}	Single Ended Transceiver Threshold	0.8	2.0	V	
Cin	Transceiver capacitance		20	pF	
Iio	Hi-Z State Data Line Leakage	-10	10	μA	0V < Vin < 3.3V, Hi-Z State
R _{pu}	Bus Pull-up resistance	1.274	1.326	kΩ	1.3kΩ±2% to Vcc
R _{pd}	Bus Pull-down resistance	14.25	15.75	kΩ	$15k\Omega \pm 5\%$ to Gnd

6.2 AC Characteristics

	Parameter	Min	Max	Units	Remarks
t _{cyc}	input clock cycle time	165.0	168.3	ns	
t _{ch}	Clock high time	0.45tcyc		ns	
t _{cl}	Clock low time	0.45tcyc		ns	
	USB Driver Characteristics				
t _r	Transition rise time	75		ns	CLoad = 50 pF
t _r	Transition rise time		300	ns	CLoad = 350pF
t _f	Transition fall time	75		ns	CLoad = 50 pF
t _f	Transition fall time		300	ns	CLoad = 350pF
t _{rfm}	Rise/Fall Time matching	80	120	%	
V _{crs}	Output signal crossover voltage	1.3	2.0	V	
	USB Data Timing				
t _{drate}	Low Speed Data Rate	1.4777	1.5225	MBit/s	
t _{djr1}	Receiver data jitter tolerance	-75	75	ns	To next transition
t _{djr2}	Receiver data jitter tolerance	-45	45	ns	For paired transitions
t _{deop}	Differential to EOP transition skew	-40	100	ns	
t _{eopr1}	EOP width at receiver	165		ns	Rejects as EOP
t _{eopr2}	EOP width at reeiver	675		ns	Accepts as EOP
teopt	Source EOP width	1.25	1.50	μs	
t _{udj1}	Differential driver jitter	-95	95	ns	To next transition
tudj2	Differential driver jitter	-150	150	ns	To paired transition

7. Ordering information

Partname	Order Code	Description	Package
MouseWarrior24Wheel II	MW24Wheel II-P	Mouse controller for optical encoders with scroll support, 6 buttons	PDIP24
MouseWarrior24Wheel II	MW24Wheel II-S	Mouse controller for optical encoders with scroll support, 6 buttons	SOIC24
MouseWarrior24EyeIII	MW24EyeIII-P	Mouse controller for optical motion sensor and scrolling, 6 buttons	PDIP24
MouseWarrior24EyeIII	MW24EyeIII-S	Mouse controller for optical motion sensor and scrolling, 6 buttons	SOIC24

The chips listed here are standard products. Customized chips are available on request.

7.1 Packaging info

PDIP24 chips come in tubes of 16 each. SOIC24 chips come in tubes with 31 chips each. To assure best handling and shipping safety please order the chips in full tubes if possible.

7.2 USB VendorID and ProductID

By default all MouseWarrior chips are shipped with the USB VendorID of Code Mercenaries (\$7C0 or decimal 1984) and a fixed ProductID. On request chips can be equipped with the customers VendorID and ProductID. VendorIDs can be obtained from the USB Implementers Forum <www.usb.org> Customized chips may be subject to minimum

Customized chips may be subject to minimum order quantities, contact <sales@codemercs.com> for details.

Following	are	the	ProductIDs	for	the
MouseWarri	ior con	trollers	s:		
MouseWarri	ior20 ()	\$000)1	
MouseWarri	ior20 V	7	\$000)2	
MouseWarri	ior24 V	Vheel]	II \$000)A	
MouseWarri	ior24 E	EyeIII	\$000)9	

ProductIDs are independent of the package type.

MouseWarrior20O and MouseWarrior20V are obsolete and are listed for information purposes only.

8. Typical application for MouseWarrior24 Wheel II

8.1 Typical application for MouseWarrior24EyeIII

9. Package Dimensions 24 Pin DIL

24 Pin SOIC

10. Revision history

Changes made to the MouseWarrior chips since V1.0.0:

V1.0.6.3

- Discontinued MouseWarrior24EyeII and replaced it by MouseWarrior24EyeIII.
- Discontinued MouseWarrior24Wheel and replaced it by MouseWarrior24Wheel II.

V1.0.6.2 (was not generally released)

- Added various custom versions.
- PS/2 interfaces does now send BAT OK on power up. This assures that the mouse is detected as hot plugged and gets initialized by the host. Newer BIOS versions show better results with this approach.

V1.0.6.1

• Discontinued MouseWarrior24Eye and replaced it by MouseWarrior24EyeII.

V1.0.6.0 (was not generally released)

- Added various custom versions.
- Changed PS/2 timing so clock low and high phase are symmetrical.
- Switched to four part version numbers.

V1.0.5 (was not generally released)

- Optimized USB stack
- Improved encoder scanning speed of MW20O and MW24Wheel by moving send routines to interrupt.
- Made Report Protocol default as specified in HID 1.1 for USB.

V1.0.4

- Added MouseWarrior24Eye variant.
- Modified MouseWarrior24Wheel to also work as a type 4 PS/2 device, enabling it to report the 4th button.
- Added some delay between receiving a PS/2 command and answering on it. This fixes problems with some badly designed host controllers.
- Fixed an interrupt related problem in the PS/2 protocol that could under certain timing conditions cause the return of a wrong reply to a command. The correct data byte to be send was overwritten, returning a random reply. This lead to the mouse not being recognized or not properly configured on some hosts.

V1.0.3

- Finished MouseWarrior24 Wheel.
- SetScaling command on PS/2 of MouseWarrior20 O and MouseWarrior24 Wheel does now activate a ballistic scaling of the mouse movement.

V1.0.2

- Added MouseWarrior24 Wheel variant. Still preliminary, subject to changes.
- Reversed position of USB Class and Endpoint descriptor to be HID Draft 4 compliant.
- Fine tuned axis handling of MouseWarrior20 V to match KeyWarrior Combo V.
- Optimized Wakeup interrupt to minimize on time during USB suspend state when checking for activity.
- Changed MouseWarrior20 O speed on USB, ADB and serial to maximum.

V1.0.1

- Modified MouseWarrior20 V to use the stronger direction of an axis instead of the difference between the directions. This eliminates the Z-axis force from X and Y.
- Fixed a bug in USB suspend that caused the controller to crash when going to suspend with remote wakeup enabled.

11. ESD Considerations MouseWarrior has an internal ESD protection to withstand discharges of more than 2000V without	Legal Stuff This document is ©1999-2015 by Code Mercenaries.			
permanent damage. However ESD may disrupt normal operation of the chip and cause it to exhibit erratic behaviour. For the typical office environment the 2000V protection is normally sufficient. Though for	The information contained herein is subject to change without notice. Code Mercenaries makes no claims as to the completeness or correctness of the information contained in this document.			
Nuclear that use additional measures may be necessary. When adding ESD protection to the signals special care must be taken on the USB signal lines. The USB has very low tolerance for additional resistance or capacitance introduced on the USB differential signals	Code Mercenaries assumes no responsibility for the use of any circuitry other than circuitry embodied in a Code Mercenaries product. Nor does it convey or imply any license under patent or other rights.			
The PS/2 lines are less critical. Series resistors of 27Ω and signal to ground capacitors of $27pF$ may be used alone or in addition to some kind of suppressor device.	Code Mercenaries products may not be used in any medical apparatus or other technical products that are critical for the functioning of lifesaving or supporting systems. We define these systems as such that in the case of failure may lead to the			
11.1 EMC Considerations MouseWarrior uses relatively low power levels and so it causes few EMC problems if a few	death or injury of a person. Incorporation in such a system requires the explicit written permission of the president of Code Mercenaries.			
 To avoid any EMC problems the following rules should followed: Put a 100nF ceramic capacitor right next to the power supply pins and make sure the PCB 	Trademarks used in this document are properties of their respective owners.			
 traces between the chips power pins and the capacitor are as short as possible. Run the power supply lines first to the capacitor, then to the chip. Adding a ferrite bead to the +5V power supply lines is advisable. 	Code Mercenaries Hard- und Software GmbH Karl-Marx-Str. 147a 12529 Schönefeld OT Grossziethen Germany			
	Tel: x49-3379-20509-20 Fax: x49-33790-20509-30 Mail: support@codemercs.com Web: www.codemercs.com			
	HRB 9868 CB Geschäftsführer: Guido Körber, Christian Lucht			